Dismiss Notice
Welcome to IDF- Indian Defence Forum , register for free to join this friendly community of defence enthusiastic from around the world. Make your opinion heard and appreciated.

A-10 effectiveness assessment

Discussion in 'The Americas' started by Picard, Aug 16, 2015.

Thread Status:
Not open for further replies.
  1. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    Introduction

    A-10 is the premiere close air support fighter today, and one of the very few dedicated CAS platforms in existence. Close air support is one of the most important, and most difficult, missions that air force can be tasked with. However, it is part of a spectrum of missions which require cooperation with other services (army cooperation missions are close air support, armed reconnaissance, battlefield interdiction and tactical reconnaissance; navy cooperation missions are patrol surveillance, air defense and anti-ship attack; missions controlled by the air force are air-to-air, deep interdiction and strategic bombing). As such, close support is typically ignored by air forces in favor of missions that air forces control and undertake by themselves, without any involvement from other services.

    Close air support is defined as attack against targets within combat (artillery) range, in direct combat contact with supported units. It has to be coordinated with both the artillery and supported units.

    In armed reconnaissance, aircraft patrol the flanks and/or front of the friendly units, providing visual reconnaissance information directly to the supported unit. They also attack enemy forces when appropriate.

    In battlefield interdiction, aircraft prevent the movement of enemy units and resupply in the battle area, as directed by ground commander.
     
  2. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    Historic close air support

    In World War I, close air support consisted of gun strafing enemy trenches or tossing 10-20 pound (5-10 kg) bombs over the side of the aircraft in support of major offensives. Bombing accuracy was on order of 100 feet (30 meters); gun strafing meant high losses to machine guns and AAA.

    All three major air forces – British, French and German – went into World War II considering support of ground forces at best a secondary consideration in their scheme of air power employment. Still, German Luftwaffe was, despite its overly large spending on medium-weight strategic bombers, one of (comparatively) major proponents of close air support. Until late in the war, specialized Stuka units carried out close air support missions. Their armor and high maneuverability meant that, despite the slow speed, 20 mm anti-aircraft guns were considered an insignificant threat. A specialized tank-destroyer Stuka with 37 mm automatic cannon was deployed on the Eastern Front in 1943..

    During 1939 invasion of Poland Stukas contributed little due to insufficient integration with ground forces. Most of the time they were used to attack roads, railways and troop movements.

    During 1940 campaign in France, Stukas acting in Close Air Support role enabled German army to easily cross Meuse river. They also supported Guderian’s drive across France, replacing the artillery that had to be left far behind, thus enabling “blitzkrieg”. Later, in Dunkirk, British lost 6 destroyers and 230 evacuation vessels, mostly to Stukas. But Dunkirk campaign also clearly shows need for close cooperation between air force and army: Hitler, at Goering’s advice, stopped ground forces and let the Luftwaffe bomb Allied positions. As a result, 200.000 British and 120.000 French troops were evacuated, leaving behind only 35.000 French troops to be captured once German army was finally allowed to attack.

    In 1941 campaign in USSR, Stukas easily destroyed many Soviet bridges, denying them reinforcements. However, small numbers procured meant that opportunity for a turkey shoot against disorganized Soviet armies was missed. Several Stuka sorties sank battleship Marat, damaged battleship Oktobrescaig Revolutia; they also sank seven other ships and damaged eight. They continued to undertake close air support and battlefield interdiction missions until the war’s end.

    Stuka has proven itself very survivable, especially when compared to multi-engined bomber losses – it had loss rate of 29% vs 45% as a percentage of initial strength in Battle of Britain, and 80% vs 134% in 1941 invasion of USSR. This was despite each Stuka flying five times as many sorties as each strategic bomber. That is, Stukas were 7,75 to 8,38 times as survivable as multi-engined bombers. It was also lethal – Hans Rudel destroyed 519 tanks in 2.530 missions on the Eastern front, mostly using Stuka’s 37 mm cannon, as well as two battleships, two cruisers, a destroyer, several bridges, four armored trains, nine aircraft, 70 landing craft, 150 artillery pieces and 800 soft-skinned vehicles, for a total of over 2.000 targets destroyed. In the process, he lost 30 aircraft to AAA and accidents – but Stuka’s cost was approximately the same as that of the tanks it destroyed.

    Tank strafing attacks were typically undertaken either from the rear at 30 ft altitude, or from almost vertical dive. Other performance requirements were maneuverability, cockpit armor, fire suppression, ability to fly under 500 ft weather, ability to fly from unprepared airfields and high sortie rate of 3-5 sorties per day per aircraft.

    Major factor in Stuka’s successes was mentality of Stuka crews. Stuka pilots referred to themselves as “soldiers” and were imbued with no mission other than support of ground troops. Target areas and priorities were assigned daily by the local ground commander, and on every mission – regardless of mission’s goal – Stukas acted as scouts, radioing directly to the nearest ground units any information on enemy force deployments or movements.

    Hs-129B was to be Stuka’s successor, but was given low priority, and cancelled before mass production. While only 5.126 Stukas and 865 Hs-129Bs were produced by Germany, Soviets produced 36.200 Il-2 “Shturmovik” CAS fighters. It had limited firepower – with only two 23 mm cannons, two 7,62 mm machine guns and 1.300 lbs (590 kg) of bombs – but heavy armor protection, including armored bath tub for the pilot. They would attack German tanks from the rear, exploiting their thin rear armor. However, during early years of the war, there was no aerial protection from German fighters; consequently, some 20.000 were lost.

    Warfare in North Africa provided ideal setting for close air support, but all air forces involved took great pains to avoid providing any. Situation was made worse when general Eisenhower placed operational control of all Allied air forces west of Libya under Major General Spaatz. This in the effect created an independent air force, and had severe negative consequences in the Kasserine Pass battle. Fortunately, under a later coordination, command of TacAir became responsibility of British Air Marshall Sir Arthur Coningham, who immediately put into the effect CAS tactics already tried and tested by RAF earlier in Libya and Egypt, placing great emphasis on air superiority and battlefield interdiction. In the end, Rommel was defeated due to naval interdiction campaign which starved out his army.

    P-47 was used primarily in close air support and tactical interdiction role, where its lack of range was not as critical but its heavy armor and firepower proved crucial. During Normandy landing, 1.500 P-47s prevented 23 German divisions from reaching the Normandy within planned three days. Had those divisions reached the shore, landing would have turned into a rout.
     
  3. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    But Allies never integrated their aircraft into a close-support structure like Germans did. USAAF and RAF had complete independence in targeting, and thus spent most of the time and effort on air-to-air fighter sweeps, as well as useless strategic bombing and deep interdiction missions. If it weren’t for some commanders who decided to support ground troops on their own initiative, USAAF units would have never undertaken any close air support. When they did, extraordinary results were achieved, providing that aircraft coordinated with ground troops; where coordination was lacking, only marginal effects were achieved.

    Quesada, USAAFs youngest lieutenant-general, held the unusual – but correct – view that close support is his most important function. Consequently, Patton decided to rely on Quesada’s fighters to cover his otherwise unprotected right flank during the entire drive across France. This enabled him to put significantly more weight into his main attack, which was one of factors in his quick advance across France. During later Battle of Bulge, bad weather and lack of coordination made air support relatively ineffective.

    In Pacific, US Marine Corps had Forward Air Controllers by 1943 (USAAF didn’t introduce them until 1945). All Marine pilots also served at least one year in the infantry, and fighters were provided with radios on ground frequencies. Mostly by chance, F-4U Corsair fighters turned out to be as suitable in close air support as the P-47s, as both had air-cooled engine and heavy armor.

    During the Korean war, 450 knot jets were proven ineffective, and US started the war with no forward air controller capability. Consequently, USAF was as good as non-existent in early days of the war as far as supporting ground troops was concerned. UN’s saving grace was that USMC had created a strong peacetime tradition of close support in their combined division / air wing teams. They had both the capability and willingness to undertake close air support – indeed, majority of their sorties were dedicated to this mission. Once USAF got off its ass, it built up hugely complex forward air controller system of ground and airborne FACs, which made its close support “too little, too late”; USN and USMC on the other hand provided highly effective close air support. Unfortunately, USAFs choice for close support – P-51 – proved hugely vulnerable (USAF scrapped the P-47 because it was slower, so none were avaliable). F-84 jet fighter proved too fast for effective CAS.

    Once static warfare began, USAF raised bomb release altitudes to 5.000 ft, making close support useless. Highly survivable and maneuverable Marine Corsairs and Navy A-1s violated altitude limits, making their attacks more effective when targets could be found. After the war, interrogated prisoners rated strafing as most devastating, followed by rockets and then by napalm; pilots provided the opposite rating, based more on visual impressiveness of the attacks.

    During the Vietnam war, prop A-1s flying close air support missions proved extremely effective at interdiction and close air support roles. Jets were used for the same missions, but due to high speed and lack of loiter time they proved ineffective. USAF showed strong preference for airborne forward air control, even though O-2 was unsuitable for the task. Response time was 45 minutes, completely inadequate for the type of warfare carried out; only aircraft loitering over the target demostrated response times of less than 5 minutes. A-1 and A-37 proved effective at close air support; other aircraft ranged from marginally effective to completely useless. Despite being avaliable, neither laser-guided bomb or electro-optical weapons were used in close air support due to the high percentage of “wild” bombs. Cluster bombs were rarely used. Most effective weapons were guns, followed by unguided 100 and 250 lb fragmentation bombs.

    A-1 squadrons developed close rapport with Special Forces troops. They provided support under 1.000 foot ceillings, in narrow valleys or on cloudy nights when all other aircraft were grounded. Marine pilots showed a significant decline in close support tradition. Pilots were no longer required to serve tours as infantrymen, and after acquiring F-4 and A-6 radar bombers, they more-or-less abandoned close support in favor of bombing Hanoi. Despite the sad state of affairs, USMC close support was still better trained and better integrated with ground units than their USAF or USN counterparts. US Army, not being allowed to own any fixed-wing aircraft of sufficient size, developed armed attack helicopters as an emergency patch to have at least some integral close air support capability. Due to instability of helicopter as a platform and inaccuracy of airborne swivelled and turreted guns, these were limited to area fire capabilities. Consequently, helicopters caused large numbers of friendly troop casualties until they were integrated with traditional FAC. Both armored and unarmored helicopters proved extremely vulnerable to heavy machine guns and light AAA. Still, helicopters could at least see what they were shooting at and respond in time (as opposed to the “next week AD” nature of USAFs close air support). Late in the war, some helicopters were equipped with TOW missiles, which proved effective against static, unprotected targets.

    Israeli Air Force never showed a committment to close air support. As in USAF, they retain no FAC capability during the peacetime, and are part of the reserve. In the 1967 war, IAF had commited the entire force to airfield attack and interdiction during first three days of the war (though Arab air forces had been destroyed by the end of the first day). On the fourth day, when IAF had finally started to provide the close support, the war on the ground had been won. In 1973 war, it failed to provide either close air support or battlefield interdiction. On the Syrian front, some A-4 sorties were allocated to tank destruction, with nothing to show for. During 1982 Bekaa Valley war, Israel had no dedicated CAS aircraft, and did very little close air support; fast jet strikes proved greater danger to Israeli own troops than to Arabs, and were relatively few.

    Croatian Air Force provided some close air support during the Operation Flash and Operation Storm. It was very limited due to small number of Mi-24 attack helicopters and no close support aircraft. While MiG-21s were also used in ground attack missions, close air support included, they proved themselves vulnerable and comparably ineffective. Necessity to have MiG-21s provide air cover against possible Yugoslav Air Force action also limited their ability to provide close air support. MiG-21s main contribution was destruction of communication centres, which prevented coordinated resistence by Serb Krajina military, while Mi-24s typically provided close air support, mission that MiG-21s were useless in. Still, Croatian military was the only military in the Balkans war which provided any close air support for its ground forces, despite lack of equipment when compared to JNA. Unfortunately, lessons have been in good part ignored – Mi-24 was retired, with no attempt to procure a CAS aircraft – either fixed- or rotary-wing – being made. Mi-24 was replaced with Mi-171Sh, but that helicopter, while capable of ground attack missions, is not a dedicated ground attack / CAS platform, being relatively lightly armed and vulnerable to harsh language. It does not have integrated gun emplacement, kevlar plates fitted around the cockpit and the engine cannot compare to Mi-24s or A-10s armor protection, and it suffers from typical helicopter lack of maneuverability and survivability when compared to the fixed-wing platforms. It is also very large when compared to Gazelle or Little Bird, being essentially an armed transport helicopter. Neither Mi-24 or Mi-171Sh could or can compensate for a lack of fixed-wing CAS platform.
     
  4. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    Effectiveness overview

    Personnel factor

    Personnel factor is the primary factor that has to be considered because people are, and always will be, more important than machines. As Bruce Clarke, armored commander in World War II has noted, morale, espirit the corps, training, leadership, information, motivation, command and confidence are far more important than weapons, equipment, supplies and information. While people like numbers because they are easy to understand, numerical factors – such as CEP, weapons range, employment altitude, loiter time, RCS etc. – are less relevant than non-numerical factors such as crew training and performance, cooperation etc. when it comes to close air support (or anything else in the war).

    For any single mission, single-role pilots will be far more important than multirole ones, because they will be able to give their whole attention and love to that one mission. In context of Close Air Support, CAS pilots have to have “ground pounder” mindset. They have to know and understand troops they are working with, they have to have intimate knowledge and understanding of ground tactics and doctrines so that they will be able to understand situation on the ground.

    Reason is simple. Main advantage that people bring to the battlefield, and main reason why they haven’t been replaced by the machines yet – and will not be replaced anytime soon – is adaptability. Any idiot computer can send a bomb to a set of coordinates (“smart weapon” is still an oxymoron; “guided weapon” is the only correct term for such weapons). But that is just one factor, the least important one. Most important factor is summed up in Boyd’s OODA loop – Observe, Orient, Decide, Act. The side that goes through that loop more quickly typically wins the fight, even when numerically and/or technologically disadvantaged. Most important factor in doing so is training; not just training in how to perform a predetermined set of actions (as necessary as it is) but training in how to adapt to quickly changing conditions on the battlefield. And while pilot of an air superiority fighter needs to adapt only to changing conditions in the air (enemy aircraft, missiles etc.), pilot of a ground attack aircraft has to adapt to both conditions in the air and those on the ground. For this reason, ground attack is more difficult than air superiority, and close air support is the most difficult mission of all. Consequently, close air support can only be undertaken by pilots who train solely for that one mission.

    Pilot training for multiple missions in, say, Dassault Rafale, will be capable of bombing enemy positions. He may even be capable of strafing ground targets (canarded aircraft can fly very slow). But he will still require detailled instructions from ground controller on what to do and how to do it. This leads to an entire set of problems. First, it adds precious seconds to pilot’s response time. Gun can be fired immediately, assuming proper setup, but precision guided munitions – especially fired from high altitude – require not only setup (though it is not as crucial as for the gun) but also have lock-on time that can be anywhere between 5 and several tens of seconds. Second, instructions – especially given in the heat of combat to someone not properly trained in ground tactics – can be misunderstood, improperly carried out etc. Third, ground controller may not be avaliable – he may be dead, communications may be down, or unit may not have one assigned (there simply aren’t enough of them to go around in any military – one per platoon would be ideal, but there are far less). With FAC out of the loop, insufficiently trained pilot in high-speed aircraft will have bad overview and even worse understanding of the situation, and will not be able to employ his weapons to the greatest effect (and may even employ them to a detrimental effect – such as blue on blue fire – though this will likely become rarer with improvements in onboard sensors). Increased complexity of training required by multirole pilot will reduce his ability to comprehend the whole and create a disconnect between reality and perception, regardless of any hardware aids he may have avaliable.

    Properly trained CAS pilot has to think of himself as a part of a ground force; as an infantryman, as a tank commander, or as a SOF trooper, depending on the mission. This allows CAS aircraft to truly integrate with ground troops with a minimum or no radio communication between ground troops and CAS aircraft. Focus that many people have on “identifying and destroying targets” shows a complete misunderstanding of what CAS mission really is about.

    CAS aircraft are far more than flying artillery. They are, if anything, flying tanks, used in concert with ground forces to enable and support ground maneuver. Nor are they there simply to “put out the fires”, to put HE on targets when ground troops run into difficulties.

    Air power is only really useful in support of maneuver operations, since these force the enemy to leave shelters and trenches and go out in the open – aerial attacks on static positions are both dangerous and ineffective. Consequently, it has to be part of the ground scheme of maneuver, remaining in direct contact with ground FACs. CAS aircraft have to work alongside ground troops, and within ground troops’ framework, on order to enable ground maneuver and prevent such difficulties from manifesting themselves in the first place. They have to adapt quickly and fluidly, which means that they cannot wait for instructions from the ground, especially not from some centralized system of control. They also have to be capable of distinguishing freind from foe, and attacking targets without endangering friends.

    This makes CAS mission by far the most difficult mission a pilot can undertake. No multirole pilot can ever have sufficient training required to have necessary understanding of ground forces’ tactics, strategies and doctrines; ground combat is much subtler and more complex than air warfare. Nor can monochrome straw-view FLIR sensors provide acute enough view of the battlefield to enable pilot to understand what is happening on the ground and adapt accordingly; radar is even worse due to having similar straw-view limitation, but worse clutter issues and inferior imaging capability.

    Just as important, if not more, is a battlefield interdiction mission. It serves to deny the enemy freedom of movement, greatly delaying him in shifting his reserves.

    Further, dedicated CAS aircraft can scout ahead of the ground troops, seeking enemy positions and possible ambushes, attacking targets of opportunity. Discovering a camouflaged enemy, especially in counterinsurgency warfare situations, requires pilot to be trained in seeing and comprehending many signs of troops’ presence that are not immediately obvious. The only way to actually notice such signs is to fly low and slow enough to notice them visually. Ground troops could also, in some situations at least, be commanded from air; this would require a twin-seat CAS aircraft with good visibility.

    In order to truly integrate themselves into groun troops’ mindset, and not just organization, CAS pilots should be full-time members of ground units, and each CAS squadron should be part of, and co-located with, an Army battallion. They should live together, train together and fight together; while sending aviators through Basic (as USMC is doing) is a good start, it is nowhere near sufficient. Again, this cannot be done with multirole pilots and multirole aircraft, and requires aircraft and crews to be colocated with ground troops.

    Techniques often necessary for CAS are also some of the most difficult techniques pilots will learn. High-angle strafe is a very difficult technique, and most pilots outside the A-10 community do not train for it, despite its usefulness in close air support. Overall, close air support is a very demanding mission and skillset required will atrophy quickly if not trained for – and pilots of multirole fighters do not typically train for it during peacetime, and even when they do, they do not train enough. In the F-16s case, radar intercepts and BFM may take up 40% of their flight training hours.

    The A-10 community represents uninterrupted close air support expertise that has been handed down since the Vietnam War. Decates of specialized tactics, techniques and procedures for supporting troops on the ground reside in the A-10 community, and nowhere else. If A-10 is retired and close air support mission transferred to “multirole” platforms, most of that knowledge will wither and die.
     
  5. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    Hardware factor

    Dedicated CAS aircraft is a must, if for nothing else then to prevent an intentional misuse of resources by air force. Ideally, independant air forces will not be allowed to exist at all. Only units equipped with specialized close air support aircraft, incapable of air-to-air and deep interdiction missions, will be effective, or even properly employed, in close air support.

    Today, mobile dispersed warfare is the most typical form of warfare (see ISIS). But even conventional troops will remain mobile, and disperse in face of the enemy air power. In any possible World War III scenario, presence of tactical nuclear weapons may well make any larger concentrations of ground forces suicidal, should a decision to use such weapons be made.

    Typical targets for CAS aircraft are tank formations, machinegun nests (sandbags, logs, basements), landing craft, truck columns, infantry in foxholes or cover, command posts, artillery, APCs. These targets are small, dispersed and oftentimes camouflaged and hard to find. Optical sensors are useful in discovering these, but eyes are still the best sensor for finding hidden targets. Both hardware and pilot characteristics suited to finding and destroying these targets while surviving local defenses are completely incompatible with air-to-air or deep interdiction work, as aircraft will have to fly low and slow to discover hidden targets – typically no more than few dozen to a hundred meters up. A-10 can fly as low as 50 feet – 15 meters – above the ground, finding hidden targets. This tactic also minimizes exposure to enemy weapons, in particular man-portable surface to air missiles.

    Ground targets attacked by close support aircraft are typically numerous and will, when attacked, either defend themselves or quickly disperse. Consequently, rate of kill is far more important than probability of kill per trigger squeeze. Quick deceleration and fast reattack time are crucial, which leads to requirement for high instantaneous turn rate.

    Radar gunsights only work against straight and level targets, and they warn the target of gun’s presence. Consequently, it is necessary that CAS fighter does not spend too much time flying straight even during attack runs. Tracking time should be less than two seconds, yet missiles require 5-15 second lock-on time. This means that in dangerous environment, only gun and other unguided weapons are actually safe for usage. Gun and rockets in particular are “point-and-shoot” weapons, significantly improving survivability in comparison to aircraft using guided weapons as well as improving lethality against mobile targets.

    Emergency reinforcement requires 5 minute response, which is only achievable with air loiter – even supersonic jets are subsonic with air-to-ground weapons, and often need up to two hours to get from air base to target (F-22, with its Mach 1,7 – Mach 1,75 supercruise with internal weapons, would cut this to “only” 55 minutes). Other characteristics necessary are rapid response from strip alert, ability to base alongside troops or within 40 miles from the front, and ability to quickly shift from one base to another. Unlike fast jets, A-10 actually can be colocated with ground troops as it can fly from unprepared fields, dirt strips and other unenviable locations. During deployment in Afghanistan, A-10 was the only Western aircraft capable of using old Soviet airfields. These characteristics means that it can respond to requests of assistance from ground troops far more quickly than fast jets can. Ability to operate from short, austere air strips also allows it to generate far more sorties than fast jets are capable of.

    High speed and altitude are not necessary to survive division-area air defenses. Maneuverability, built-in airframe survivability and countermeasures are adequate. All effective CAS aircraft had following characteristics: high survivability against forward-area AA in order to survive a close-in attack; excellent low-speed maneuverability in order to find and accurately attack targets; guns capable of defeating enemy’s armored vehicles and low cost to allow large numbers deployed.

    In fact, due to low operating altitudes and constraints of steep, broken terrain and narrow valleys, CAS aircraft will often operate near their stall limits. Low altitude is a must during bad weather conditions, as radar cannot identify targets and both eye and IR sensors are hampered by bad weather (F-35, even if all claims about EOTS, DAS and PGMs are correct, will not be capable of supporting troops in thick cloud conditions). Yet these conditions are precisely ones where ground troops will be at greatest threat of ambush, and thus at greatest need of close air support. Only precision munitions that can be used in such conditions are GPS guided ones, but these are useless against mobile targets as they require at least half-an-hour to set up impact point (in some conditions, up to 12 hours), and they can be jammed. Even with GPS guidance, landscape and weather can throw the coordinates off by as much as 500 ft (150 m), while typical infantry combat distance is between 50 and 150 meters, and can get even lower. In good weather, with careful calculations and good satellite pictures, GPS targeting can be as precise as 15 ft (5 m), but in many parts of the world that is rarity. While high speed jets require a minimum of 2.000 ft cloud ceiling and 3 mile visibility for safe operations, these conditions only occur in Europe 62% of the time. 1.000 ft ceiling and 1 mile visibility required by the A-10 occur in Europe 86% of the time. Note here that Middle East weather conditions are very similar to European ones.

    Other types of precision munitions are also primarily useful against static (though not necessarily fixed) targets. Consequently, precision weapons undermine flexibility and versatility of the air power, characteristics without which air power is useless. (One mission where precision weapons are useless is airfield denial: unless aircraft themselves are destroyed, precision weapons can only create a small number of easily filled craters. Large number of unguided bombs are far more effective: while Obvra airfield was operational 24 hours after the precision attack, 120 unguided weapons were required to successfully shut it down. Precision weapons are also useless in situations where momentary reaction is required due to quickly changing ground situation. Only guided – not precision – weapon that might prove useful in airfield denial is a cruise missile carrying large number of cluster bomblets. Since bomblets are notoriously unreliable, many will fail to detonate at impact but will rather detonate at random times after dropping them, making repairs very problematic).
     
  6. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    Attack speed should be below 275 knots to allow sufficient accuracy with gun, which requires high-lift wings (large wing thickness for maximum lift at subsonic speeds). Needless to say, this automatically disqalifies any supersonic jets – F-16 and F-35 cannot safely fly at speeds below 450 knots, whereas A-10 can fly at speeds below 300 knots. Aircraft should also have good maneuvering climb-out performance; maneuver is more important than speed in defeating enemy’s fire solution. Therefore a good rate of climb is necessary. Long loiter time and ability to actively follow development of the ground situation is necessary to allow sufficently fast response (<5 minutes). It also helps reconnaissance and deterrence against an ambush. Airframe has to be resistant to damage in order to survive SAMs, MANPADS and AAA. Small-calibre AAA (up to 37-40 mm), which is the most dangerous to CAS aircraft, destroys aircraft by causing fire or propulsion and control failures. Fast jets are vulnerable to even 7,62 mm fire, but CAS aircraft can be designed armored and redundant enough to survive even larger-calibre AAA. Due to its maneuverability and damage resistance, A-10 is the only Western aircraft capable of surviving within MANPADS range.

    Jammers, chaff and flares are necessary to counter threat of surface-to-air missiles. Weapons used have to be precise, reliable and lethal. Gun and fragmentation bombs are most effective against soft targets, while gun and AP bombs are best against hard targets. Of guided weapons, only optical and IR weapons are sufficiently effective. While development has solved many issues (particularly targeting issues are lesser now with development of IIR missiles), they still require much longer time to lock onto a target than gun. Combined with short distances involved, and it can be seen that guided weapons are dangerous to employ and often ineffective. 8 to 14 seconds are required to acquire, lock on and launch the missile, which increases aircraft’s vulnerability window. CAS fighter has to be capable of “shap-shot” style attacks, where no more than 2,5 seconds are required to aim and deliver weapons; this requires lethal gun system.

    However, neither F-15/16/18/22s 20 mm or F-35s 25 mm guns are lethal weapons in ground attack role. They are so damage-limited that, when a F-16 pilot accidentally shot at a school in New Jersey, witnesses reported only hearing the “…sound of someone running across the roof of the building.” No damage was reported at all. 25 mm cartridge is only marginally superior.

    A-10 is the only modern Western jet aircraft, and one of the few existing aircraft, that can provide close support in conditions of low cloud ceillings (thick clouds block lasers and IR sensors, while GPS and radar are unsuitable to close air support). It also has one of the lowest fratricide and civillian casualty rates, whereas B-1 has the highest fratricide and civilian casualty rates.

    Even in clear meteorological conditions, video, radar and IR sensors at high altitude have too poor video resolution to reliably find targets requested by ground troops. This low-resolution video is then displayed on screen about the same size as a CD case. As a result, high-flying aircraft as well as UAVs are completely useless in SCAR (strike coordinated armed reconnaissance) missions. They also cannot reliably identify valid targets, and their straw-view nature prevents them from properly displaying ground situation to the pilot. Meanwhile, A-10 pilot can use his own eyes or binoculars to get proper view of situation on the ground.

    A-10 is also the cheapest aircraft to maintain in the USAFs inventory – and contrary to some statements, it is not getting more expensive. This allows more sorties in the air for the same price, which helps both pilot proficiency and sortie rate. Stealth aircraft in particular cost several times more to operate than the A-10, as does profoundly useless B-1. Unlike many aircraft, A-10 can operate in desert winds, heavy smoke conditions and icy temperatures.

    As it can be seen, A-10 corresponds to most requirements outlined. Only other aircraft that fit these requirements are Su-25 and possibly L-159 and Tucano / Super Tucano.
     
  7. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    A-10s combat performance

    Ground troop support effectiveness

    In 1991 Desert Storm, coordination between CAS element and ground troops was very difficult as ground troops moved too fast for any but organic close air support to coordinate effectively with ground commanders; such support was not avaliable due to the A-10 squadrons being part of the USAF air wings and not US Army divisions. Due to incompetence and lower numbers of Iraqi Army, close air support actually was not even required, but it was still provided through USMC system of allocating aircraft to the areas where troops were in contact with the enemy. Often, these sorties were transferred to battlefield interdiction once it became clear that close support is not necessary. A-10 gave a good account of itself, to the point that Iraqi POWs named it as a single most recognizable and feared Coalition aircraft.

    In early stages of the Afghan war, there was a blessing that no enemy aircraft and very few air defense systems existed. Consequently, nearly the entire air force could be dedicated to close support of the troops. Due to known effectiveness of mortar and air support, a conscious decision was made to leave all towed artillery behind. Everything that could fly and carry weapons was used for support of troops on the ground. Helicopters have proven themselves unsurvivable: when 101st Airborne Division assaulted fortified cave positions manned by Taliban and Al-Quaeda fighters, they got pinned. First to arrive were five AH-64 attack helicopters; by the evening, four of them were rendered combat ineffective by RPG and small arms fire. Remaining support was provided by fixed-wing aircraft.

    A-10 often found itself supporting Special Operations Forces teams and Afghan Northern Alliance troops. In one instance a four-man SOF team leading 26 ANA troops was ambushed several times by 800 Taliban fighters. During second ambush, a B-1B aircraft tried to help, to no effect. SOF team called in the A-10 support. Two A-10s arrived; as there was no radio contact, they flew over the canyon to put eyes on the situation. After identifying the enemy positions, they attacked with GAU-8s. Enemy soon dispersed, and convoy limped back home, escorted the entire time by the A-10s.

    B-1B in a previous example may have been more effective had there been an effective communication between aircraft and troops, and/or targeting equipment. However, the entire encounter warns against a folly of relying exclusively on high-technology solutions: a lesson that is often ignored. Without high-tech solutions, an aircraft was needed that would allow the pilot to assess the ground battle disposition – an aircraft with good cockpit visibility, low-altitude, low-speed maneuverability and low-altitude survivability. Even though terrain offered cover, A-10s gun strafing was so effective that Taliban offered to release captives as a bribe to shut down the A-10 attack.

    In a similar incident, a convoy of 12 vehicles and 60 troops got stuck when the lead vehicle fell into ravine and flipped over. Night fell while troops worked to get the vehicle out, and Taliban used the opportunity to set up firing positions along a tree line. They opened fire at dawn, quickly pinning US troops. Two A-10s arrived, flying low enough to identify positions, and started strafing the Taliban. In two hours, A-10s dropped three 500 lbs bombs and made 15 gun strafing passes; it should be noted that they resorted to dropping bombs only after expending entire gun ammo load. Taliban withdrew, leaving 18 dead behind; US casualties were limited to three wounded. A-10s flew as low as 75 ft (23 meters), possibly less.

    Another lesson of Afghanistan war were shortcomings of PGMs. Reliance on precision munitions meant that it took hours for USAF to deliver close air support. It also meant that only A-10 could provide close support during bad weather. In one such instance in Afghanistan, thundercloud cover extended down to 1.000 ft altitude. This forced AC-130, B-1 and MC-12 airplanes to return to the base, depriving outnumbered and outgunned 90-man Coalition commando team of life-saving close support. Two A-10s arrived instead, flying low enough to distinguish friends from foes. They proceeded to use their 30 mm cannon to strafe targets within meters of Coalition positions during 13-hour engagement.

    This was reinforced during 2003 invasion of Iraq, when 300.000 30 mm and 17.000 20 mm cannon rounds were fired. Even after Operation Iraqi Freedom has ended, gun strafing remained commonplace, as gun is the safest and best weapon to use when enemy troops are in close proximity to friendlies (and this “close proximity” is still farther than typical assault rifle effective range). Soon after the invasion, 3.000 US troops came under heavy fire; they only got out without heavy casualties thanks to the A-10 providing support with its gun.

    In 2009 in Afghanistan, a Green Beret team was pursuing a dangerous Taliban leader. When they conducted an attack on his compound, they came under heavy fire and USAF Special Tactics Squadron Combat Controller with the Green Berets was severely wounded. Believing wounds to be lethal, he immediately called in two A-10s, which proceeded – with no input from the ground – to strafe mere 65 feet (20 meters) from the friendly position, ultimately breaking up enemy attack and allowing friendly troops to be evacuated back to base, with no losses.
     
  8. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    These incidents can be compared to an incident where there was no A-10 support. A large force of Taliban assaulted a compound defended by 15 or so US Marines of Echo company. Mortars, artillery and Cobra attack helicopters failed to have any effect on Taliban assault. A pair of F-15 jets circling overhead relayed imaginery to Echo company headquarters. F-15s had extensive air-to-ground weapons onboard, but incoming top commander Stanley McChrystal had issued orders for more careful employment of air power to minimize civilian casualties in order to rob Taliban of one of primary sources of popular support. This order had the intended effect – it reduced civilian deaths by 87 per cent. However, it also doubled American military casualties as it meant that in many cases fast jets and drones could not offer effective support. Targets in this case were right on the edge of the village; in particular a sniper on a building. In such situation, any attack by fast jets would create far more new Taliban recruits than it would kill, exchanging a strategic defeat for an uncertain tactical victory. As a result, F-15s were waved off. B-1Bs were not even called in, having previously proven themselves far more suited for slaughtering Afghan civilians than saving US troops. While pilots agreed with the logic behind directive, it made all fast and/or high altitude aircraft useless. Marines managed to fend off first attack on their own, but supplies were running low. Most of the team went to fetch new supplies, leaving five men to garrison the compound. 15 minutes later, some 15-20 Taliban launched a coordinated, well orchestrated attack on the compound, with sniper support. With radio dead, Marines could not call in help. F-15 air strikes with GPS munitions were off the table in any case, due to close proximity of Taliban to both Marines and civilians, and lack of time. Once Marines managed to get the radio up and running, they called in mortars and artillery to eliminate the sniper. Both failed. A pair of Harriers were called in to survey the scene, transmitting the video back to the company headquarters. They hit the building, but failed to eliminate the sniper and had to retreat due to lack of fuel. In the end, squad was relieved by ground troops.

    In a 2013 incident within United States themselves, a drug cartel convoy was confronted near Ajo by a lone border agent. Low-flying A-10 was in the area, and made multiple low passes over the confrontation. Presence of a curious A-10 forced the cartel convoy to flee south, saving border agent’s life.

    A-10 was also used to support Kurdish Peshmerga against ISIS troops. It did not take long for it to spark panic in ISIS ranks, confirming itself as a valuable psychological weapon in addition to being a superb close support platform. As the only aircraft capable of properly executing air strikes without help of ground controllers, its employment proved the only logical course of action. Still, lack of the A-10s and restrictive rules of engagement mean that US are conducting only 15 air strikes per day in Iraq and Sirya, compared to 800 per day during 2003 war. Despite this meagre number, high-altitude strikes have already killed 120 civilians in Sirya alone. What is utterly illogical in US conduct is that the A-10s are often flying under same restrictions as fast jets are, significantly reducing their effectiveness. Further, delays when trying to utilize fast jets for ground attack have allowed ISIS more-or-less unrestricted freedom of movement.

    Many times, mere presence of the A-10 has proven enough to keep the enemy at bay. In previously mentioned incident (where A-10s suppored SOF/ANA team), Taliban tried to bribe the US troops into calling off the A-10s, by offering to release some captured ANA members in return. Iraqi prisoners also named the A-10 and B-52 as two most feared aircraft types. Currently, A-10 is busy spreading panic in ISIS ranks. Psychological impact of A-10s presence can decisively alter the flow of battle, making the enemy more deliberate and cautious, which automatically gives advantage in OODA loop to friendly troops.

    Time and again, A-10 has also proven itself an ideal airborne controller aircraft. While this task can be done by turboprop aircraft and helicopters, these (especially helicopters) are too vulnerable to air defense systems; helicopters also have completely inadequate range and loiter time. Without airborne controller, there are only two alternatives: placing controller on the ground, or allowing fast jets to fight nearly blind (and that is assuming that weather is good, which is very often not the case in Europe and Middle East. If weather is bad, fast jets are completely blind).

    Considering how USAF uses exercise results as an argument for the F-22s effectiveness, why that same logic is not applied to the A-10?
     
  9. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    Lethality

    A-10 has 22 gun bursts avaliable as well as 6 external hardpoints, giving it 28+ attack runs. This compares to 16 attack passes for the F-16C and 13 for the F-35.

    During the 1991 Desert Storm campaign, 132 A-10s flew highest sortie rate in the theater and destroyed more tactical ground targets than the entire remaining force of 2.000 high-speed jets. They also caused over 50% confirmed bomb damage, despite flying only 30% of the sorties. A-10s accounted for half of 1.700 Iraqi tanks destroyed by the air power, as well as 300 APCs and artillery sites, launching 90% of Maverick missiles used in the conflict. Unlike fast jets, its pilots regularly violated safety altitude limits in order to use its massive GAU-8 gun. When significant elements of Saddam’s army sortied towards the city of Khafji, two A-10s plus a single AC-130 quickly destroyed 58 targets in a 71-vehicle convoy. Later on, two A-10s killed 23 tanks in a single encounter, using A-10s 30 mm cannon. On February 27, 1991. two A-10s destroyed 20 Iraqi Scud mobile missile launchers. It outperformed the A-16, a ground attack version of the F-16, so comprehensively that the entire A-16 effort was dismantled.

    Original A-16 was an F-16 with GAU-13, a four-barrel version of GAU-8, and equipped with FLIR and targeting system, which would be best described as a crude version of DAS. However, 30 mm gun proved too much for tightly packed electronics of the A-16. In Gulf, F/A-16 with GEPOD30 gun pod, cockpit armor and advanced avionics was used, including targeting systems superior to the older A-16, as well as GPS and terrain avoidance systems. Within first 48 hours GEPOD30 has shown itself completely unsatisfactory as podded configuration and vibrations meant that precise aiming was impossible and it often damaged sensitive electronics. Pylon for the pod would warp permanently after few bursts, making aiming impossible, and due to high speed aiming was nearly impossible even when gun installation was in perfect condition. Usage of gun pod was consequently discontinued and F/A-16s went back to using bombs.

    Consequences of insisting on high-altitude bombing and altitude limits (15.000 ft hard limit) have shown themselves in the Kosovo war. NATO flew 36.000 sorties, fired 743 HARMs, and dropped 11 million kg of munitions, of which 6.728 were precision-guided. They inflicted 387 military casualties and destroyed 3 out of 80 SAM batteries. Meanwhile, A-10 is responsible for half of all CAS weapons employment in Afghanistan in recent years, despite flying half of the sorties.

    In 2003 invasion of Iraq, A-10 fired 311.597 rounds of 30 mm ammunition. A-10 pilots routinely violated altitude limits in order to do so. This alone is enough to invalidate two main arguments used against the A-10: that high speed and altitude are prerequisite for survivability, and that precision munitions make aircraft gun redundant and unnecessary as a tool for close air support.

    During 2011 international intervention in Libya, A-10s sank enemy warships, proving yet again A-10s multriole/multimission capability. A-10 has also proven the most effective platform in countering ISIS, which is more flexible and spread out than a traditional army.
     
  10. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    Survivability

    In 1985, it was already said by USAF that the A-10 will prove unsurvivable by mid-1990s due to new SAMs. During Gulf War I, A-10 suffered 5 losses (3 shot down, 2 written off) in 8.084 sorties, a loss rate of 0,62 per 1.000 sorties (it should be noted that GAO reported that number of A-10 sorties was likely undercounted). For comparison, 5 Harriers were lost in combat out of 3.342 sorties, a loss rate of 1,50 per 1.000 sorties, more than twice the A-10s loss rate. F-16s suffered 3 losses in 13.340 sorties, a loss rate of 0,22 per 1.000 sorties. However, F-16s typically operated at higher altitudes than the A-10s did. F-15E suffered 2 losses in 2.172 sorties, a loss rate of 0,92 per 1.000 sorties. F-18 suffered 3 losses in 4.551 sorties, a loss rate of 0,66 per 1.000 sorties.

    F-117 suffered no losses. However, this is not a good indicator of survivability. Low-RCS F-117 flew only during the night, and also flew just 1.250 sorties. It can be seen that A-10 and F-16 would have also suffered no losses, or at most a single loss (0,77 and 0,29), had they flown as few sorties. A-10 suffered no losses when flying at night, and flew almost as many night sorties as the F-117 while facing defenses significantly more lethal than ones faced by the F-117. Further, as can be seen here, all A-10 losses were to AAA and IR SAMs, against which radar stealth provides no protection (in IR spectrum, A-10 is as stealthy as F-117 was). A-4, GR.1, A-6E, F-14A and B-52 have all suffered losses to significantly less lethal radar SAMs, despite typically flying at higher altitude (or maybe because of it). F-15C was another platform which suffered no losses, likely due to being a single-mission air-to-air platform.

    As it can be seen, single-role air superiority fighters had the lowest loss rate, while STOVL Harrier had the highest loss rate. Overall, aircraft with greater focus on ground attack had higher loss rates; a logical result when considering incompetence and small size of Iraqi air force and the fact that ground attack is always more difficult than aerial combat. Radar stealth has provided no measurable improvement in terms of survivability, and the greatest survivability benefit was provided by the ability to operate during the night.

    While these loss rates were achieved against admittedly incompetent opponent, situation was not very different during the Kosovo war. In Kosovo war, A-10 suffered 0 losses (two aircraft damaged) in 4.300 sorties, while F-117 suffered one loss in 1.270 sorties, for 0,79 losses per 1.000 sorties. Second F-117 was damaged. F-16 suffered one loss in 4.450 sorties, or 0,22 losses per 1.000 sorties. However, both F-117 incidents happened during night; had it flown during day, loss rate would have certainly been higher. All aircraft operated with jammer support, and F-117 shootdown happened when jammer was improperly aligned with, and too far from, the aircraft to be of protective value. Army’s Apache attack helicopters spent the war in their bases after two helicopters (out of 24 sent) crashed in the first week.

    In the Second Gulf War, one A-10 was lost (over Baghdad) in 1.119 sorties. Between 2003 and 2007, there were 32 attack helicopter (AH-64 and AH-1) losses, and 18 fixed-wing losses (of which 1 A-10 and 1 AV-8B). During attack on Karbala, 33 Apaches attacked Iraqi Republican Guard. One was shot down and 30 sustained heavy damage, with nothing to show for.

    In three wars above, A-10 suffered 6 losses in 13.500 sorties, or one loss per 2.250 sorties. This compares to one loss per 2.520 sorties for the F-117 or one loss per 4.448 sorties for the F-16 in first two wars analyzed. Unlike F-117, A-10 operated primarily during the day; unlike F-16, it often operated low and slow enough to actually use its gun to support ground troops.

    In Operation Anaconda in Afghanistan, 7 Apaches were sent to attack Taliban forces. All got hit by machine gun fire, and five were effectively destroyed.

    During operations against ISIS, low-flying A-10s were often targeted by MANPADS. In one incident, 4 Strela missiles failed to cause any damage; after seeing that, ISIS fighters fled, leaving their dead behind and carrying the wounded. These same missiles have proven highly effective against Serb aircraft – including high-speed MiG-21s – during war in Croatia. While difference may be down to user’s competence, ISIS fighters have so far proven themselves relatively competent and motivated – far more so than Iraqi government troops (though that is not saying much). Despite MANPADS threat, A-10s continue to fly at low and medium altitudes.

    This survivability comes as no surprise. A-10 was designed to operate, and survive, in a World War III scenario – one more lethal than any A-10 is likely to face, even in nation-state wars it may get used in. Unlike designers of the F-117 and F-35, A-10 designers were smart enough not to rely on a technological pipe dream – one which is physically impossible to achieve. Low-level flying that A-10 is designed for is the only reliable way to hide from the enemy radars. Combination of good cockpit visibility, tough design enabling low-level flight, maneuverability and countermeasures can keep the A-10 alive even in face of modern IADS – especially if the A-10 is upgraded with modern countermeasure suites and IR MAWS. If anything, IADS – combining picture from multiple sites and platforms of varying types – will make radar stealth irrelevant, assuming that it isn’t already. In fact, in Gulf and Kosovo wars radar stealth has provided zero measurable survivability value, and there is no indication of that changing anytime soon.
     
  11. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    Versatility

    Other than close air support and battlefield interdiction, A-10 has also excelled in other roles: combat search and rescue, supression and destruction of enemy air defenses, maritime strike and counter-air missions against enemy rotary-wing aircraft. Even with “multirole” jets taken into account, and despite its slow piecemeal upgrades, A-10 is still one of the more versatile combat aircraft avaliable to USAF, and can, if properly equipped, take on any air-to-ground mission. During Desert Storm, A-10 has proven itself a competent multirole aircraft. It flew tank busting and counter-infantry close air support missions, as well as supression of enemy air defenses, combat search and rescue, battlefield search and counter-air missions.

    [​IMG]

    A-10 is far from being a “niche capability”. F-35 is a “niche capability”, seeing as it is only capable of precision strikes against fixed targets, and some limited air-to-air combat. Further, platforms optimized for a single range of similar missions (not necessarily single mission) are typically more effective than “multirole” platforms. In Gulf War, most effective air superiority platform was the F-15C, which is used exclusively for air superiority. Most effective ground attack platform was the A-10 itself – which is used for a very wide range of very different ground attack missions beyond its primary close air support mission, and can also counter low-flying helicopters and attack aircraft. Mixing air-to-air combat and ground attack requirements into one platform is a height of stupidity, but mixing different air-to-air or air-to-ground requirements into one platform can allow for a versatile and affordable air force if done properly.

    In fact, A-10 is a far better counter against attack helicopters than high-speed jets such as the F-15. Gunships fly too near the ground to be easily targeted by radar, and rotor also generates returns which confuse radar targeting, acting, essentially, as a jammer. Consequently, radar AAMs are nearly useless against them. IR AAMs are somewhat better, but overall the best way to bring down helicopters is gun. However, gunships are very maneuverable at slow speeds and fly very close to the ground, an environment in which pilots of fast jets are not trained to operate. Because of all these factors, A-10 is the best counter against helicopters avaliable. (Shooting down low-flying helicopter gunships is more of an air-to-ground than air-to-air mission, to the point that laser-guided bombs were used for that purpose).

    If navalized, A-10 could also defend US carrier strike groups from submarines and small missile boats, and be used as a maritime patrol and strike aircraft. It could also help with search and rescue missions in the open sea, thanks to its long loiter time, excellent cockpit visibility and low-speed maneuverability.
     
  12. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    Other

    In COIN warfare, it is important to avoid killing civilians. In this, the Warthog excels. A-10 had 0,3% rate of incidents causing civilian casualties, the second lowest in the entire USAF. That is, it caused 1,4 civilian casualties for every 100 kinetic sorties, compared to 6,6 for B-1B. Only KC-130 had lower rate than the A-10, and all other aircraft were far worse than the A-10. B-1 was actually even worse than this, since data excluded 2009 Granai massacre – overall, B-1 is by far the worst killer in theater. B-1 is also the worst when it comes to causing fratricide incidents.

    Overall, civilian casualties per 100 kinetic sorties were 0,7 for KC-130, 1,4 for A-10, 1,6 for F-15E, 2,1 for F-16, 2,2 for F-18, 6,6 for B-1 and 8,4 for AV-8. It should be noted that both KC-130 and F-15E have more than one crewember, while all tactical aircraft (B-1 is strategic bomber) that have casualty rate above 2,0 have only one crewmember. This means that the A-10 would have likely done even better with a second crewmember. This comparison also ignores that the A-10 makes more passes per firing sortie than any other aircraft with possible exception of the KC-130; with 2-3 times more passes per firing sortie than B-1, A-10 actually causes 13-20 times less civilian casualties per pass than B-1 does.

    During 1991 Gulf War, A-10 had mission capable rate of 95,7%, higher than any other jet in the US Air Force. In late 2014, A-10 accounted for quarter of USAF aircraft sent to fight the ISIS.
     
  13. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    Characteristics comparison vs F-35

    F-35 will, if all goes well, reach IOC in 2019. Even then it will not be able to perform any close air support until 2021, and it will never be able to replace the A-10.


    Crew performance

    Since A-10 is a single-role aircraft, A-10 pilots can afford to become experts at A-10s primary mission and very good at secondary missions, while pilots of multirole aircraft are expected to be very good at aircraft’s primary mission and good at all other missions. Further, A-10 requires 6,2 maintenance man hours per hour of flight, compared to 30-50 hours that will likely be required by the F-35. Even if the F-35 pilots devote 60% of time to ground attack missions, they will train less than 15% as much as the A-10 pilots will. Further, F-35s primary mission is strike against fixed targets, and not close air support; this will further magnify the difference between A-10 pilot and the F-35 pilot. Consequently, if the A-10 is retired, most techniques and procedures developed for close air support will be lost, and F-35 will never come anywhere close to the A-10 when it comes to supporting ground forces.


    Lethality and combat endurance

    A-10 has 1.174 30 mm rounds, allowing for 18,06 seconds of sustained fire. F-35 meanwhile carries measly 180 25 mm rounds, allowing for 3,27 seconds of sustained fire. On average, A-10 can strafe 12 targets, while F-35 can strafe only two, before having to rearm. Its gun rounds are also significantly less lethal than the A-10s equivalents. A-10 also has 11 pylons with total capacity of 7.260 kg. F-35 has four internal and 7 external pylons (11 in total) with total capacity of 8.160 kg. Overall, F-35 has slight advantage in maximum payload but A-10 offers 20 to 29 attack passes, while F-35 offers 13 to 15 attack passes. F-35 has little ability to find and attack camouflaged targets, something that is no problem for the A-10 thanks to its gun, which does not rely on sensors for targeting.

    F-35 has combat radius of 1.082 km while A-10 has combat radius of 998 km in deep strike or 463 km with 1,7 hours of loiter. As F-35 consumes 2.721 kg/h at economic cruise setting (M 0,8), 1,7 hours of loiter will reduce combat radius to 340 km. This means that F-35 will have to carry external fuel tank(s) in order to match A-10s endurance, reducing external weapons load.


    Survivability

    A-10 is invulnerable to anything up to 20 mm, while the F-35 can be shot down by .22 cal guns thanks to its thin skin and fuel-surrounded engine. A bunch of Taliban armed with AK-47s presents an insourmountable survivability obstacle for the F-35 attempting to fly low enough to locate camouflaged targets. Consequently, F-35 will not be allowed to fly below 10.000 ft, best case scenario.


    Situational awareness

    A-10 has major advantage in that it has bubble canopy, allowing good visibility out of the aircraft. While F-35s DAS has been said to be capable of offering pilot a complete spherical situational awareness, grayscale image from DAS is hardly conductive to finding camouflaged ground targets. DAS is also comparably low-resolution sensor suffering from the need to cover everything around the aircraft, and being primarily missile warning system. EOTS on the other hand is an inbuild IR targeting pod; it can act as an IRST/FLIR, but suffers from same straw-view limitation and clutter issues as radar and optical sensors, plus having grayscale display. F-35 also has significantly higher search speed, further reducing pilot’s situational awareness.


    Maneuverability

    A-10 search speed is 225 mph (100,58 m/s) with 1.500 ft turn radius; this gives turn rate of 12,6 deg/s. Turn radius for instantaneous turn is 189 m with 35,3 deg/s turn rate (420 kph, 7,33 g), and for sustained turn is 1.500 m with 6 Mk.82 bombs, with 19 deg/s sustained turn rate. F-35A has a minimum turn radius of 410,34 m for instantaneous turn and 1.368,2 m for sustained turn, with instantaneous turn rate of 26,6 deg/s and sustained turn rate of 10,8 deg/s. This is likely a result of the A-10s thick, straight wings producing much more lift than the F-35s thin wings optimized for transonic flight, plus different measurement altitudes (difference will likely be lower at same altitude).

    Regardless of the cause and actual difference, higher turn rate allows the A-10 to position itself, engage and reengage the target more quickly than the F-35 will be able to. It also improves its ability to survive any ground defenses, and allows it to maneuver at low altitude and in constrained terrain, giving it ability to support the troops even in adverse weather conditions. Tighter radius of turn also allows it better ability to find camouflaged targets.


    Force presence

    Unit flyaway cost is 20 million USD for A-10 and 150 million USD for F-35. Further, A-10 can fly 3,33 hours per day compared to 0,47-0,77 hours per day for the F-35. Overall, A-10 provides 32-53 times as many aircraft in the air compared to the F-35.

    Since A-10 has 20-29 onboard passes compared to 13-15 for the F-35, this means that A-10 can provide a total of 3.330-4.829 attack passes per billion procurement USD, compared to 36-69 for the F-35, a 50:1 difference at the very least.


    Mobility
    A-10 can fly from 4.000 ft dirt or steel mat air strips. F-35A requires 8.000 ft concrete runways, which have to be held in pristine conditions and constantly monitored for any foreign objects. F-35 also requires extensive maintenance facilities, partly due to its overall complexity and partly due to its stealth coating. A-10 can be maintained in the field.



    In the end, anyone who thinks that the F-35 can replace the A-10 should try using laptop computer to break the rocks, and see how well it goes. Jackhammer may not be as advanced, but is designed for the job.
     
  14. Picard

    Picard Lt. Colonel RESEARCHER

    Joined:
    Feb 4, 2012
    Messages:
    5,865
    Likes Received:
    3,024
    Conclusion

    As it can be seen, A-10 is a very effective CAS aircraft. This is confirmed by requests for the A-10 support in Sirya, Iraq and Afghanistan (A-10 assistance there was requested by the CENTCOM commander) and request by EUCOM commander for the A-10 to be avaliable for contingencies in Ukraine.

    Due to highly specific pilot and aircraft characteristics required for close air support, any air force seeking to train pilots and acquire aircraft for wide spectrum of different missions will have inadequate close support capabilities.

    However, USAF brass hates the A-10; this stems from nature of any air force as a supporting service for the Army. Ground troops and ground maneuver win wars; everything else, air power included, is there only to support ground forces. Naturally, Air Force brass, with inflated impression of their own importance, does not like to be reminded of that fact, and so does not want to do CAS. As vice commander of Air Combat Command, Major General James Post, (allegedly) put it: “I can’t wait to be relieved of the burdens of close air support.” He certainly did accuse all supporters of the A-10 of committing treason. Earlier, USAF general ordered his staff to “promote the good news about the B-2, F-22, F-35 and even the UCAVs” – in other words, to lie. USAF wants to do only strategic bombing (“Shock and Awe”, “Global Strike”) missions, and missions that enable strategic bombing – namely, air superiority and SEAD/DEAD. All their attention is focused on defending strategic and pseudo-strategic bombers, while need to defend ground troops is completely ignored. Another reason why USAF wants to get rid of the A-10 is that the A-10, with its 30 mm gun and low-altitude survivability, flies in the face of established high-altitude strategic bombardment dogma. In fact, the only reason why A-10 was even designed was because USAF used it to kill the Army Cheyenne program. But once that purpose was accomplished, A-10 had already gathered too much Congressional support to kill early, so USAF was forced to buy the entire initial production run. No further orders were placed, which was the first time such thing happened, and USAF has been trying to kill it ever since.

    Not that other major NATO air forces are much better – only reason they can’t get rid of the fixed-wing CAS mission is that they do not have any to begin with, their only CAS platforms being extremely vulnerable helicopters (Eurocopter Tiger, Gazelle etc.). Bright point among European air forces is Czech Air Force, with its L-159 aircraft. Even that aircraft is not a proper CAS platform, though it is at least capable of conducting CAS – unlike mainstays of major air forces. Only possible answer to this would be disbanding air forces – not integrating air forces back into the ground armies (as in WWII USAAF), but rather making air power integral part of ground power, with squadrons being direct part of Army structure, like tank or infantry brigades. In such proposal, CAS aircraft would be part of ground maneuver units on division level and maybe lower, while air superiority aircraft would be concentrated under air superiority divisions, which would be part of army corps. Alternatively, air force would concentrate on air-to-air air SEAD/DEAD missions, while Army would receive responsibility – and fixed-wing aircraft suited for – air to ground missions designed to support the ground operations.

    USAF is not the only group that dislikes the A-10. Defense industry prefers to sell incomplete, hugely complex and costly aircraft as these make far more money than simple, proven jets. This means that any course of action which opens room for few more F-35s is welcome, regardless of how many NATO troops die as a result. USAF generals who help the defense industry secure lucrative contracts can expect to be given very well paid positions in that same industry after retirement. Consequently, their decisions are based on defense industry’s interests rather than any concerns about military effectiveness. This marriage from Hell is the greatest danger A-10 has ever faced, especially since defense industry is more powerful during current Obama administration than it was ever before. Decision to try and retire the A-10 is result of this, and not of meagre savings that would result (3,5 billion USD annually that would be saved is 0,5% of Pentagon’s budget). In the end, F-35 is favored by the USAF and A-10 is hated by it, because unlike the A-10, F-35 can help USAF in the war that USAF generals consider more important than any actual shooting war: the endless raid on the federal treasury, and similarly endless quest to secure lucrative post-retirement positions in the defense industry.

    Part of the reason is also US’ acute risk aversion. US have historically shown themselves far less willing to tolerate casualties than European countries, and especially than Russia and China. In terms of military procurement, focus seems to be on minimizing risk to exclusion of all other concerns, such as combat effectiveness, maintainability and affordability. Hence procurement of UAVs, UCAVs, stealth aircraft, stealth ships, PGMs and other high-technology solutions which promise effective military at no risk – and always fail to deliver at that promise, reducing risk only because they cannot be deployed in numbers due to high price tag and maintenance requirements. At the same time, these solutions significantly decrease effectiveness of military force, actually increasing casualties in the long run, especially among the most important component of any military – ground troops.

    What NATO needs is not the F-35. It needs somebody like Stalin to shoot some sense into the brass. With the A-10 being primary CAS platform of not just US military but NATO as a whole, its possible retirement will affect far more than just United States. Modern multirole fighters are simply air superiority fighters capable of dropping bombs (F-35 is a dedicated deep strike aircraft, not a multirole fighter, and definetly not a CAS platform). None of them can do close air support mission. Just like a smart person will take heavy boots to the mountain and beach sandals to the beach, smart air force will have a dedicated CAS fighter and leave fast movers to conduct missions they are capable of conducting. But USAF generals believe their own careers in defense industry to be more important than lives that will be lost if the A-10 is retired; apparently USAF requires its generals-to-be to leave both their brain and their conscience in the nearest garbage dump before recieving promotion. It seems that civilian politicians, such as Senators John McCain and Kelly Ayotte, know (or care) more about military matters than USAF brass does (or Commander in Chief Barrack Obama, for that matter).

    P.S. This is what a FAC says about the A-10:

    “The A-10 is the most requested asset for CAS period. The aircraft was built for the job and the pilots were as well. Not only are they good with the targeting pod, but they are fantastic with a pair of binoculars. They can give us LGBs (laser guided bombs) from up high or they can tear up the bad guys at eye level with the gun. That gun is a powerful psychological weapon as well, the enemy knows the distinct “burp” sound and it is very morbid and demoralizing to them when it announces itself. Second to the A-10 the AC-130 is really fantastic for certain applications. After that the menu just gets less appealing. The fast jet guys do a great job, Harriers in particular, but none match the A-10’s unique abilities. It has saved and taken many lives, I can attest to that.”

    At least USAF brass has the perfect record of predicting what will be needed in the next war: they have never gotten it right. Not once.
     
  15. randomradio

    randomradio Colonel REGISTERED

    Joined:
    Nov 22, 2013
    Messages:
    11,206
    Likes Received:
    6,312
    That picture bit is wrong. The F-15C is single role.
     
Thread Status:
Not open for further replies.

Share This Page